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A B S T R A C T

Empirical region-specific (RSM), depth-integrated (DIM) and depth-resolved (DRM) primary production models
are developed based on data from the Kara Sea during the autumn (September–October 1993, 2007, 2011). The
model is validated by using field and satellite (MODIS-Aqua) observations. Our findings suggest that RSM
algorithms perform better than non-region-specific algorithms (NRSM) in terms of regression analysis, root-
mean-square difference (RMSD) and model efficiency. In general, the RSM and NRSM underestimate or
overestimate the in situ water column integrated primary production (IPP) by a factor of 2 and 2.8, respectively.
Additionally, our results suggest that the model skill of the RSM increases when the chlorophyll specific carbon
fixation rate, efficiency of photosynthesis and photosynthetically available radiation (PAR) are used as input
variables. The parameterization of chlorophyll (chl a) vertical profiles is performed in Kara Sea waters with
different trophic statuses. Model validation with field data suggests that the DIM and DRM algorithms perform
equally (RMSD of 0.29 and 0.31, respectively). No changes in the performance of the DIM and DRM algorithms
are observed (RMSD of 0.30 and 0.31, respectively) when satellite-derived chl a, PAR and the diffuse attenuation
coefficient (Kd) are applied as input variables.

1. Introduction

Estimating the annual water column integrated primary production
(IPP) (symbols and abbreviations are presented in Table 1) and study-
ing its spatiotemporal variability on regional and global scales are
among the main tasks of ocean biogeochemistry. Field studies provide
in situmeasurements but cannot quantify basin and global IPP dynamics
without significant extrapolation (Berger, 1989; Bidigare et al., 1992;
Koblentz-Mishke et al., 1970). This problem can be resolved by using
bio-optical high resolution satellite-derived data (e.g., surface chl a
(Chl0)), sea surface temperature (T0) and incident photosynthetically
available radiation (PAR) (Carder et al., 2004; McClain et al., 1998,
2004; O'Reilly et al., 1998) as input variables in the IPP models.
Therefore, modelling IPP is the key approach in the investigation of
primary productivity (e.g., Behrenfeld and Falkowski, 1997b; Carr
et al., 2006; Platt and Sathyendranath, 1993).

Numerous IPP algorithm designs and assessments of their predictive
capacity on global and regional scales have been developed during the
“ocean colour satellite era” (from 1978 to the present) (Campbell et al.,
2002; Carr et al., 2006; Friedrichs et al., 2009; Saba et al., 2010, 2011).

The results of four Primary Productivity Algorithm Round Robins
(PPARR) allowed these authors to come to the following main conclu-
sions: (i) the model's performance was independent of the algorithm's
complexity, namely, the number of input variables, depth and wave-
length resolution; (ii) all the models over- or underestimated the IPP by
approximately a factor of 2; and (iii) the average model skill was
significantly lower in shallow regions than in pelagic waters.

The same conclusions could be applied to the Arctic Ocean (AO)
(Bélanger et al., 2013; Hill et al., 2013; Hill and Zimmerman, 2010;
Matrai et al., 2013; Zhai et al., 2012). Hill and Zimmerman (2010)
revealed that AO models over- or underestimated the observed IPP by a
factor of 2 and that simple algorithms that were based on chl a
performed better than more complex algorithms. Recently, descriptions
of AO IPP models have been presented in terms of their efficiency
(Babin et al., 2015; Y. Lee et al., 2015; Petrenko et al., 2013). These
authors concluded that all the AO IPP models currently have significant
limitations and should be used with caution.

One important factor causing problems in the development of
robust IPP models for the Arctic Ocean is undersampling and a lack
of suitable data on primary production and abiotic characteristics.
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Thus, comparatively few AO region-specific algorithms have been
developed with Arctic Ocean datasets (Hill et al., 2013; Hill and
Zimmerman, 2010; Matrai et al., 2013; Zhai et al., 2012) and applied
to the assessment of AO IPP (Hill et al., 2013).

The accuracy of IPP models that were developed based on the World
Ocean dataset decreases at the regional scale, and significant regional
differences exist in the performance of algorithms (Campbell et al.,
2002; Ishizaka et al., 2007; Z. Lee et al., 2015; Saba et al., 2010; Siegel
et al., 2001). Therefore, we can assume that region-specific algorithms
perform better than non-regional algorithms. The development of
region-specific IPP algorithms for the Kara Sea seems obvious. The
Kara Sea is characterized by specific environmental conditions that lead
to particular processes of organic matter synthesis because of intense
river runoff and a wide shelf zone (Dittmar and Kattner, 2003; Hanzlick
and Aagaard, 1980; Holmes et al., 2012; Le Fouest et al., 2013; Stein,
2000). Fresh water discharge into the Kara Sea shelf leads to sharp
stratification (Kubryakov et al., 2016; Zatsepin et al., 2010) and high
particulate (POM) and coloured dissolved (CDOM) organic matter and
terrigenous mineral suspension concentrations (Amon, 2004; Dittmar
and Kattner, 2003; Rachold et al., 2004; Vetrov and Romankevich,
2004). Consequently, the Kara Sea waters are characterized by high
turbidity, low transparency (average Secchi disk depth (Zs) of 8 m) and
a small photosynthetic layer (Zph) (22 m on average) (Burenkov et al.,
2010; Demidov et al., 2014; Mosharov, 2010; Mosharov et al., 2016;
Vedernikov et al., 1994). Therefore, the development of region-specific
models could be one method to improve IPP estimation in the Kara Sea's
optically complex waters.

Choosing appropriate model coefficients and input variables is very
important to increase the algorithm's efficiency. As recently shown, the
IPP in the Kara Sea during autumn weakly depends on the chl a
concentration. On the other hand, the chlorophyll specific carbon
fixation rate (Pbopt) and PAR greatly affect the Kara Sea's primary
production (Demidov et al., 2014). At the end of the vegetative season,
the PAR level should be considered the main factor that defines the
primary production in the Kara Sea. Ignoring the chl a vertical
distribution, specifically, the subsurface chlorophyll maximum (SCM),
may be another reason for decreasing of model's efficiency (Ardyna
et al., 2013; Arrigo et al., 2011; Hill et al., 2013).

Thus, the main purposes of this study are as follows: (1) the
development of a region-specific Kara Sea IPP depth-integrated (DIM)
and depth-resolved (DRM) models; (2) the skill assessment of developed
models with in situ and satellite datasets; (3) a comparison of the
predictive skill of region-specific and non-region specific algorithms;
(4) the assessment of the effect of photophysiological parameters and
PAR on model performance; and (5) the parameterization of vertical
chlorophyll profiles in waters with variable productivity and an
investigation of the influence of the vertical chl a distribution on the
model accuracy.

2. Data and methods

2.1. Data sources, sampling and Kara Sea trophic sub-regions

The field data that were used in the model's development were
collected during three Kara Sea expeditions: the 49th cruise of the R/V
“Dmitry Mendeleev” (from 30 August to 19 September 1993) and the
54th and 59th cruises of the R/V “Akademik Mstislav Keldysh” (from 9
September to 30 September 2007 and from 15 September to 4 October
2011, respectively) (Fig. 1a). Only two stations were established on 30
and 31 August and were included in the autumn database. The chl a
concentration was measured at 113 stations and the primary produc-
tion at 85 stations. The PP, chl a and PAR data that were used for model
validation (Supplementary material S1) were collected at 31 sites
during the 125th cruise of the R/V “Professor Shtokman” (from 3
September to 20 September 2013) (Fig. 1b). The PP and chl a data and
the incident and subsurface PAR (see below) were used to calculate the

model coefficients and to obtain the average chl a vertical profiles.
The boundaries of the Kara Sea were established in a previous work

(Hill et al., 2013). The sampling depths were defined after a preliminary
sounding of temperature, conductivity and chlorophyll fluorescence by
a CTD probe (Seabird Electronics; SBE-19 and SBE-32). Niskin bottles
were deployed at the stations to obtain water samples from discrete
depths within the upper 100-m layer. Trace metal cleaning procedures
(e.g., Teflon coated covers and springs for the Niskin bottles) were used
during all the cruises.

The Chl a, PP and PAR data were divided according to the trophic
categories as determined by the surface chl a concentration (Morel and
Berthon, 1989; Uitz et al., 2006) in the following ranges:
0.1–0.5 mg m−3 (I); 0.5–1.0 mg m−3 (II); 1.0–2.0 mg m−3 (III) and>
2 mg m−3 (IV). The average trophic level values of the primary
productivity and abiotic parameters are presented in Table 2. The
relative contributions of waters with different productivity in the Kara
Sea regions and water masses (WM) (Demidov et al., 2014; Pivovarov
et al., 2003) are presented in Fig. 2. Category I and II waters
(Chl0 = 0.1–1.0 mg m−3) characterize the northern WM. The south-
western WM was principally characterized by category I and III waters.
Category II and III waters (Chl0 = 0.5–2.0 mg m−3) primarily char-
acterized the river runoff WM. The high chl a concentration in the
category IV waters (Chl0 > 2.0 mg m−3) is an inherent property of the
Ob and Enisey estuaries (Fig. 2).

As recommended in previous studies of the vertical chl a distribu-
tion, stratified and mixed waters should be considered separately. The
ratio of photosynthetic to upper mixed layers (Zph/UML) was chosen as
the index of water column stability (Morel and Berthon, 1989; Uitz
et al., 2006). Here, we define the photosynthetic layer as the layer up to
the compensation depth, where the PP that is measured by the
radiocarbon method equals 0. Waters where Zph/UML > 1 were
considered as stratified and Zph/UML < 1 as mixed. A sharp pycno-
cline in the upper 10-m layer was observed in the Kara Sea during the
autumn (UML = 7–10 m). The photosynthetic layer commonly ex-
ceeded the UML and ranged on average from 6 to 47 m in different
Kara Sea regions (Demidov et al., 2014). Thus, we considered all the
Kara Sea waters as stratified and classified vertical chl a profiles
according to entirely trophic categories.

2.2. Primary production, chlorophyll and light measurements

The methods for primary production and chl a determination are
described in detail in previous studies (Mosharov, 2010; Mosharov
et al., 2016; Vedernikov et al., 1994) and are summarized in Demidov
et al. (2014). Primary production was estimated on board by using a
radiocarbon technique (Steemann Nielsen, 1952). The chl a concentra-
tion was determined by using a spectrophotometric method (Jeffrey
and Humphrey, 1975; SCOR–UNESCO, 1966) or fluorometrically
(JGOFS, 1994). The PP and chl a data that were obtained by these
methods were used for model development.

The intensity of the surface irradiance was measured with a
pyranometer (Vedernikov et al., 1994) or an LI-190SA (LI-COR) sensor.
The daily PAR was obtained from integration in the LI-1400 module for
five-minute intervals (mol quanta m−2) and saved in the internal
memory. The diffuse attenuation coefficient for downwelling solar
radiation in the visible spectrum (Kd) was measured by an alphameter
(Vedernikov et al., 1994). In the absence of underwater hydrooptical
measurements, Kd was calculated by using empirical Kara Sea region-
specific relationships among Kd, the Secchi depth (Zs) and Chl0 as
shown in the Supplementary material (S2). Vertical profiles of under-
water light were retrieved according to Beer's law.

2.3. Satellite ocean colour data, PAR, Kd and chlorophyll region-specific
algorithms

Moderate Resolution Imaging Spectroradiometer (MODIS-Aqua)
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Level 2 daily water-leaving reflectance (Rrs) values at 10 spectral
channels (412–869 nm) were obtained from the NASA's Goddard
Space Flight Centre (NASA GSFC) (www.oceancolor.gsfc.nasa.gov/).
Satellite-derived chl a, surface PAR, and diffuse attenuation coefficient
(Kd) values were applied as input variables. Keeping in mind specific
environmental conditions in the Kara Sea, we used region-specific
algorithms to derive Chl and Kd from satellite data; the surface PAR was
derived by using the algorithms by Vazyulya et al. (2016).

All the satellite data products were calculated as average values
over acceptable pixels around a given point (in situ and satellite match-
up sites, N = 26). A pixel was considered acceptable if it was without
flags of cloudiness or land, and Rrs > 0 for seven considered spectral
bands within 488–678 nm; the data were treated by using software that
was developed by Sheberstov and Lukyanova (2007).

The chlorophyll concentration was calculated with a novel formula:

Fig. 1. Maps of the stations that were used for model development (A) and model validation (B).
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Chl R R Nln( ) = − 6.64 ln ( (531) (547)) − 0.265 (R = 0.43; = 69),rs rs
2 (1)

where Rrs(531) and Rrs(547) are the at-surface remote sensing reflec-
tance at 531 and 547 nm MODIS spectral bands. This formula was
derived based on satellite data for Rrs and directly measured chlor-
ophyll concentrations in the Kara Sea in 2007, 2011, and 2013–2015
(the number of measurements N = 69). This formula is similar to the
formula by Kuznetsova et al. (2013) but differs from the latter in terms
of its numerical coefficients and better corresponds to datasets with
lower chlorophyll concentrations. For the above data, the mean
chlorophyll concentration from the in situ data equalled
0.70 mg m−3, that from (1) equalled 0.66 mg m−3, and that from
Kuznetsova et al. (2013) equalled 1.00 mg m−3; the standard devia-
tions equalled 0.34 and 0.43 mg m−3, respectively.

A semi-analytical algorithm for solving the inverse problem was
modified by Vazyulya et al. (2014) to calculate the spectral values of
Kd(λ). First, the CDOM absorption coefficient ag(443), the spectral
slope S and the particle backscattering coefficient bbp(555) were
retrieved by using Rrs values from the wavelength range ≥ 488 nm,
and then Gordon's formula (Gordon, 1989) was used to calculate the
spectral values of Kd(λ). The obtained values of Kd were extrapolated to
the short-wave portion of the spectrum by using the previously derived
system of basic functions.

The spectral values of the surface irradiance Es(λ) for both the total
and the direct and diffuse components for the entire visible range with
steps of 20 nm were calculated by using MODIS Level 1 data and the
SIO RAS (P. P. Shirshov Institute of Oceanology Russian Academy of

Science) algorithm (Kopelevich et al., 2003). Then, the Kd_PAR for the
near-surface layer, which corresponds to a level of 0.1 Es_PAR, was
calculated by using the obtained values of Kd(λ) and Es(λ).

As noted in previous works, the PAR model for MODIS-Aqua
overestimates in situ values (Frouin et al., 2012). An analysis of the
Kara Sea PAR dataset also shows the systematic overestimation of
satellite-derived values (PARsat) compared to measured values
(PARmeas). On average, the PARmeas/PARsat ratio equalled 0.64
(N = 30; cv= 20%). We used this coefficient as the conversion factor
of PARsat in IPPmod calculations based on this empirical relationship.

2.4. IPP model validation

The models were verified by using an independent database.
Notably, verification against in situ data that were used in model
parameterization can lead to anticipatory conclusions regarding the
model's performance (Behrenfeld et al., 2002). The relationships
between the measured and modelled IPP estimates were tested by
using linear regression. The variance of the dependent values was
defined by the coefficient of determination (R2). The slope and
intercept of the linear regression determined the fitted line according
to a 1:1 agreement.

The formulations that were used to calculate the model performance
indices are presented in the Supplementary material (S3). The root-
mean-square difference (RMSD) was used to assess the model's perfor-
mance. The RMSD revealed differences between the log-transformed
measured and modelled values and comprised both bias (systematic

Fig. 2. Contribution (%) of the waters of different productivity (in terms of surface chl a, mg m−3) in the Kara Sea water masses (WM) (Demidov et al., 2014; Pivovarov et al., 2003). I –
Southwestern WM; II – Ob estuary; III – Enisey estuary; IV – River runoff WM; V – Northern WM (St. Anna's trough). The numerals above the bars are the number of measurements.
Surface 25 psu isohaline is shown as a boundary of different WM.
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error) and variability (σ – random error) (Doney et al., 2009; Stow
et al., 2009). The log-normalized RMSD has been used to assess the
overall model performance in PPARR studies (Campbell et al., 2002;
Friedrichs et al., 2009; Y. Lee et al., 2015; Saba et al., 2010, 2011).
Models with lower RMSD have a higher skill and vice versa. RMSD
values close to 0.3 indicate model over- or underestimation by a factor
of 2. We calculated the mean bias (B) of each model (S3) to assess over-
or underestimated IPP (IPPmeas).

The model performance can be shown as a single plot by using a
target diagram (Jolliff et al., 2009). A target diagram illustrates the
total RMSD as the distance from the origin, with B on the y axis and the
unbiased root-mean-square difference (uRMSD) on the x axis. Models
with standard deviations that overestimate the observed σ are plotted
on the right side of the diagram, and models with σ that underestimate
the observed standard deviation are plotted on the left. Thus, a target
diagram shows how much the model over- or underestimates the mean

and variability of PP. The bias and uRMSD are normalized by σ and
plotted relative to a circle with a radius of 1 (normalized σ), which
illustrates whether a model performs better than the mean of the
observations. Models that are located inside the circle have positive
model efficiency (ME) (Stow et al., 2009). If ME < 0, the mean of the
observations provides a better approximation than the prediction by the
model. This result suggests that the algorithm is of limited use.

3. Results

3.1. Results of region-specific IPP model development

3.1.1. Model developed by average PP, Chl a and PAR (Ψ_MOD)
A brief model description is presented in Table 3. The Kara Sea

Ψ_MOD was developed by using the basin average efficiency of the
irradiance utilization by the phytoplankton in the water column

Table 1
The main variables and definitions used in the article.

Variable Units Definition

IPPmeas mg C m−2 d−1 Measured depth-integrated primary production
IPPmod mg C m−2 d−1 Modelled depth-integrated primary production
PPz mg C m−3 d−1 Measured primary production at the depth z
PPmax mg C m−3 d−1 Maximum primary production value within water column
Chl0 mg m−3 Surface chl a concentration
Chlz mg m−3 Chl a at the depth z
Chlmax mg m−3 Maximum chl a concentration within water column
Chlrel Relative chl a concentration within water column (Chlz/Chlmax)
Chlmeas mg m−3 Measured chl a concentration
Chlmod mg m−3 Modelled chl a concentration

Chlmeas
mg m−3 Averaged within photosynthetic layer chl a concentration

Chlmod
mg m−3 Averaged within photosynthetic layer chl a concentration calculated by model

Chlph mg m−2 Photosynthetic layer integrated chl a
k Index of chl a vertical distribution (Chlph/Chl0)
Pb mg C (mg chl a)−1 h−1 Chlorophyll specific carbon fixation rate measured in ICES incubator
Pbopt mg C (mg chl a)−1 h−1 Maximum chlorophyll specific carbon fixation rate within a water column
Pbz mg C (mg chl a)−1 h−1 Chlorophyll specific carbon fixation rate at the depth z
Pbrel Relative chlorophyll specific carbon fixation rate (Pbz/Pbopt)
Pbmeas mg C (mg chl a)−1 d−1 Measured daily chlorophyll specific carbon fixation rate within a water column
Pbmod mg C (mg chl a)−1 d−1 Modelled daily chlorophyll specific carbon fixation rate within a water column
ψ g C (g chl a)−1 mol quanta−1 d−1 Water column efficiency of photosynthesis
I0 (PAR) mol quanta m−2 d−1 Subsurface photosynthetically available radiation
Iz (PAR) Relative units Photosynthetically available radiation at the depth z
Zph m Photosynthetic layer up to the compensation depth
Zs m Secchi disk depth
Т0 °С Surface temperature
Kd m−1 Diffuse attenuation coefficient for downwelling irradiance
ζ Optical depth (Kd z)

Symbols Definition

PP Primary production
IPP Depth-integrated primary

production
chl a Chlorophyll a

Abbreviation
Definiti-
on

RSM Region-specific models
NRSM Non-region specific models
PAR Photosyntetically available

radiation
UML Upper mixed layer
SCM Subsurface chl a maximum
CDOM Colour dissolved organic matter
POM Particular organic matter
DIM Depth-integrated models
DRM Depth-resolved models
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(ψ= Pbmeas/I0) (Falkowski, 1981) and the index of the vertical chl a
distribution (k = Chlph/Chl0) (Campbell et al., 2002) as the model
coefficients. The input variables were the surface chl a and daily
incident solar radiation (PAR), parameters that can be easily measured
in the field. Thus, the primary production in the water column can be
calculated as follows:

IPP k ψ Chl I=mod 0 0 (2)

Previously, this model was tested in the PPARR2 (Campbell et al.,
2002) and was applied to investigate the PP spatial variability in the
Drake Passage (Demidov et al., 2011). In the framework of the
presented study, we calculated the average k ψ value as the Kara Sea
region-specific coefficient. The geometric average of k ψ was applied
consistently with its log-normal frequency distribution (Fig. 3)
(Aitchison and Brown, 1957). The geometric average of the Kara Sea

k ψ equalled 8.27:

IPP Chl I= 8.27mod 0 0 (3)

3.1.2. Parameterization of the vertical profiles of chlorophyll distribution
and its use in the Kara Sea depth-resolved model (KSDRM)

The KSDRM was developed by using the maximal chlorophyll
specific photosynthetic rate within the water column (Pbopt), underwater
assimilation activity and vertical profiles of the chl a distribution. A
conceptual formula of the IPP calculation is presented below:

∫IPP P Chl DL dz= ( )
z

z
b

z

0

(4)

where Pbz is the chlorophyll specific carbon fixation rate at depth z, Chlz
is the chl a content at depth z and DL is the day length.

Table 2
The average trophic level values of the primary productivity and abiotic parameters in the Kara Sea.

Parametera Trophic statusb

0.1–0.5 0.5–1.0 1.0–2.0 > 2.0

Chl0 0.37 ± 0.1
25

0.74 ± 0.12
30

1.35 ± 0.21
36

3.39 ± 1.13
20

Chlph 13.05 ± 6.53
21

11.57 ± 6.69
22

12.56 ± 6.88
24

30.40 ± 14.90
17

IPPmeas 40 ± 23
21

43 ± 36
22

60 ± 46
24

142 ± 109
17

Pbopt 1.03 ± 0.57
21

1.09 ± 1.89
22

0.96 ± 0.60
24

1.21 ± 0.61
17

Zph 38 ± 23
21

20 ± 7
22

14 ± 8
24

12 ± 5
17

ψ 0.57 ± 0.39
22

0.68 ± 0.42
16

0.88 ± 0.75
15

0.90 ± 0.61
16

Kd 0.210 ± 0.147
25

0.308 ± 0.062
30

0.447 ± 0.129
36

0.582 ± 0.132
19

I0 7.32 ± 4.43
23

4.16 ± 2.53
16

4.60 ± 3.48
15

8.86 ± 8.07
16

UML 10 ± 5
25

8 ± 4
30

7 ± 3
36

10 ± 7
20

k 41.73 ± 28.32
21

16.3 ± 79.65
22

9.40 ± 5.23
24

8.93 ± 2.92
17

a Average values and standard deviation (± σ) are represented above the line and number of the data below the line.
b Waters of different trophic status were separated according to values of Chl0 (mg m−3).

Table 3
Models description and data sources.

Abbreviation Definition Model type Input data for model validation
and type of the data

Sources Model adaptation (region of
development)

SCHL_reg Algorithm that was based on empirical relation
among surface chl a and IPP

DIM Chl0
in situ

This article Kara Sea (RSM)

Ψ_MOD Model that was developed by average PP, chl a
and PAR

DIM Chl0, PAR
in situ

This article Kara Sea (RSM)

VGPM Vertically Generalized Production Model DIM Chl0, Pbopt, Zph, PAR
in situ

Behrenfeld and Falkowski,
1997a

World Ocean (NRSM)

VGPM_Arc VGPM that was modified by Arctic Pbopt – T0
relationship

DIM Chl0, T0, PAR
in situ

Behrenfeld and Falkowski,
1997a; Cota et al., 2004

World Ocean (NRSM)

VGPM_TR VGPM that was modified by averaged Pbopt in
the different Kara Sea trophic regions (TR)

DIM Chl0, Pbopt, PAR
in situ

Behrenfeld and Falkowski,
1997a, 1997b; this article

World Ocean (NRSM)

ZCHL_reg Model that was based on empirical relation
among Kara Sea Chlz and PPz

DRM Chlz
in situ

This article Kara Sea (RSM)

KSDRM Kara Sea depth-resolved model DRM Chl0, PAR, Kd

in situ
This article Kara Sea (RSM)

ArcPP Model that was based on empirical relation
among Arctic Ocean Chlz and PPz

DRM Chlz
in situ

Hill et al., 2013 Arctic Ocean (NRSM)

Ψ_MODsat Model that was developed by average PP, chl a
and PAR

DIM Chl0, PAR
satellite-derived

This article Kara Sea (RSM)

KSDRMsat Kara Sea depth-resolved model DRM Chl0, PAR, Kd

satellite-derived
This article Kara Sea (RSM)
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Modelled values of Pbz were calculated based on the power depen-
dence of Pbrel (Pbz/Pbopt) values on the relative PAR Iz (% I0) (Fig. 4):

P I= 11.65rel
b

z
0.49 (5)

hence,

P P I= ( (11.65 )) 100b
z

b
opt z

0.49
(6)

The maximum water column chlorophyll specific carbon fixation
rate (Pbopt) was obtained from the empirical relationship between Pbopt
and I0, which was recently calculated by Demidov et al. (2014):

P = 10opt
b I−0.71+0.90 log10 0 (7)

By substituting formula (7) into Eq. (6), Pbz can be calculated as
follows:

P I= ((10 )(11.65 )) 100b
z

I
z

−0.71+0.90 log 0.4910 0 (8)

The next step in the KSDRM's development is the calculation of the
chl a concentration at each depth (Chlz) by using Chl0. Previous studies
noted that the shape of the vertical chl a curve depends on Chl0 and,
consequently, on the trophic status of the region (Morel and Berthon,
1989; Uitz et al., 2006). Five-meter averages of vertical chl a profiles
were created within the upper 55-m layer for each trophic category
(Fig. 5). Every individual profile was normalized to the maximum
chlorophyll value (Chlz/Chlmax) to overcome the non-normal chl a
distribution within each depth bin and to illustrate the relative vertical
chlorophyll pattern. The distribution of the normalized curves was
considered relative to the optical depth ζ = z Kd, where z is the
geometric depth and Kd is the diffuse attenuation coefficient for
downwelling irradiance. Then, the obtained profiles were mathemati-
cally approximated.

As seen in Fig. 5, the average normalized vertical chl a profiles were
linearly approximated with high determination coefficients
(R2 = 0.65–0.96) in the waters of trophic categories I and IV and
exponentially (R2 = 0.92 and 0.93) in the waters of trophic categories
II and III. In the category I waters, the curves within and below the
euphotic layer (1% PAR) were approximated separately (Fig. 5).
Interestingly, the chl a concentrations permanently decreased with
depth for Chl0 > 0.5 mg m−3. A homogenous chlorophyll distribution
within the euphotic layer and a linear decrease below this layer were
observed with relatively low Chl0 (0.1–0.5 mg m−3). Registering Chlmax

at the surface or within the subsurface layer, i.e., Chlmax ≈ Chl0, is the
principle for applying vertical chl a profiles in the KSDRM.

The chlorophyll content at each depth (Chlz) can be calculated by
using the equations which are given in the Supplementary material
(S4). Thus, we can calculate IPPmod at each site within waters of
different trophic status by substituting Eq. (8) and the Chlz calculation

Fig. 4. Average values (in relative units) of chlorophyll specific carbon fixation rate (Pbrel)
vs. average relative values of subsurface PAR at depth z (Iz).

Fig. 3. Frequency distribution of the Ψ_MOD coefficient k ψ (model description see in the Table 3 and in the text of the article).
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(S4) into Eq. (4).

3.1.3. Empirical relationship between the Kara Sea Chlz and PPz (ZCHL_reg
model)

The relationship between the log-transformed Kara Sea primary
production and chl a at all depths is presented in Fig. 6a. The equation
of linear regression is

PP Chl N plog = 0.43 + 1.13 log (R = 0.27; = 355; < 0.01)z z10 10
2

(9)

This formula was applied to calculate the depth-resolved PP by
using model curves of chl a's vertical distribution. An analogous
approach with the ARCSS-PP dataset has been applied by Hill et al.
(2013) for Arctic Ocean IPP estimation.

3.2. Algorithm skill assessment with field data

3.2.1. Results of regression analysis
We tested Chl-based algorithms that were developed based on the

Kara Sea dataset, i.e., region-specific models (RSM), by using field
observations. The skill assessment of these algorithms was compared to
that of non-region-specific algorithms (NRSM) (Behrenfeld and
Falkowski, 1997a; Hill and Zimmerman, 2010). The results of the
regression analysis (Fig. 7; Table 4) suggest that all the models
predicted from 47 to 93% of the in situ IPP. The analysed algorithms
were divided into five groups in terms of their coefficient of determina-
tion as an indicator of model predictive capacity. Models that were
developed solely based on the chl a distribution within the water
column (Chlz) (ZCHL_reg and ArcPP) (Table 3) had the least predictive
skill (R2 = 0.40–0.50). The second category (R2 = 0.50–0.60) included

Fig. 5. Relationships among average chl a relative values (Chlrel = Chlz/Chlmax) and optical depths (ζ) in the Kara Sea waters of different trophic status defined according to surface chl a
concentration (Chl0): I – Chl0 ranged from 0.1 to 0.5 mg m−3; II – Chl0 ranged from 0.5 to 1.0 mg m−3; III – Chl0 ranged from 1.0 to 2.0 mg m−3; IV – Chl0 > 2.0 mg m−3. Horizontal
lines are presented 1% and 0.1% PAR. Bold lines are fitted and dots are measured results.
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two modified VGPM types, which comprised (i) Pbopt, which was
calculated by the regional temperature relationship (VGPM_Arc), or
(ii) the average Pbopt (VGPM_TR). Better performance was observed for
the regional IPP algorithms SCHL_reg and Ψ_MOD (third category)
(R2 = 0.60–0.70) and the depth-resolved KSDRM (fourth category)
(R2 = 0.70–0.80). The best performance (R2 > 0.90) (fifth category)
was observed for the VGPM with the in situ Pbopt as an input variable
(Table 4).

A perfect algorithm in terms of regression analysis has a 1:1
relationship between the predicted and observed PP (slope = 1). The
lowest value of the slope (0.40) was calculated for the simple model
that was based on Chl0 (SCHL_reg) (Fig. 7a). The best relationship
between IPPmod and IPPmeas was observed for Ψ_MOD (slope = 0.98)
(Fig. 7b) and VGPM (slope = 1.02) (Fig. 7g). A relatively high slope
was calculated for the KSDRM (slope = 0.74) (Fig. 7d). The relation-
ships between the predicted and observed IPP for the other algorithms
ranged from 0.54 to 0.62 (Table 4).

3.2.2. RMSD, model efficiency (ME), biases and variance
The RMSD and ME values are represented in Table 4 and Fig. 8. In

terms of the individual model skill, the region-specific algorithms that
were developed by using photoadaptive parameters (Ψ_MOD and
KSDRM), along with the VGPM (in situ Pbopt as the input variable)
(RMSD ranged from 0.27 to 0.31), had the best predictive capacity. The
models that only considered the chlorophyll concentration (as an index
of phytoplankton biomass) (SCHL_reg and ZCHL_reg), along with the
modified VGPM and ArcPP, performed worse (RMSD ranged from 0.32
to 0.59). The same result was found when the ME was considered as a
performance index. NRSM ArcPP and VGPM_Arc had the least skill
(RMSD equal to 0.59 and 0.54, respectively) and ME < 0 (Fig. 8;
Table 4).

We used a target diagram to illustrate the capacity of the models to
estimate IPP better than the average value (Fig. 9). Symbols inside the
circle (normalized standard deviation of the in situ IPP) indicate better
performance versus the mean field data. As seen in Fig. 9, only two
models (ZCHL_reg and Ψ_MOD) underestimated the in situ depth-
integrated PP. Additionally, all the algorithms overestimated the IPP
variability. Thus, the modelled standard deviation exceeded the
observed standard deviation. The performance indices in Table 4 also
suggest that the region-specific models (SCHL_reg, Ψ_ MOD and
KSDRM) had the fewest biases.

3.2.3. Simulated vertical chl a distribution and assimilation activity in the
depth-resolved algorithm (KSDRM)

Simulated vertical chl a profiles were compared with the in situ chl a
distribution in waters of different trophic status and are given in the
Supplementary material (S5 and S6). Significant variability was present
in the form of in situ chl a curves. The subsurface chlorophyll maximum

Fig. 6. (A) – primary production (PPz) vs. chl a (Chlz) for all depths and (B) – depth-
integrated primary production (IPPmeas) vs. surface chl a concentration (Chl0).

Table 4
Regression statistics, performance indices for the log-transformed IPPmeas and IPPmod and average values (mg C m −2 d−1) for the each model type.

Model type Averaged IPPmod
a Regression statistics Performance indices

Slope Intercept R2 p value B σ RMSD uRMSD ME

SCHL_reg 58 ± 38 0.40 1.05 0.65 < 0.01 0.07 0.23 0.32 0.31 0.53
Ψ_MOD 90 ± 130 0.98 0.01 0.69 < 0.01 −0.03 0.56 0.31 0.30 0.58
VGPM 141 ± 175 1.02 0.21 0.93 < 0.01 0.24 0.50 0.27 0.13 0.66
VGPM_Arc 196 ± 188 0.59 1.19 0.60 < 0.01 0.51 0.36 0.59 0.30 −0.60
VGPM_TR 104 ± 106 0.62 0.84 0.58 < 0.01 0.21 0.39 0.37 0.31 0.37
ZCHL_reg 33 ± 29 0.55 0.48 0.50 < 0.01 −0.25 0.37 0.42 0.33 0.21
KSDRM 99 ± 113 0.74 0.59 0.74 < 0.01 0.17 0.41 0.29 0.24 0.62
ArcPP 160 ± 163 0.54 1.17 0.47 < 0.01 0.42 0.37 0.54 0.34 −0.34
Average IPPmeas

a 77 ± 94

Slope and intercept – parameters of linear regression; R2 – coefficient of determination; p value indicates the significance level of each regression. Indices are mean model bias (B),
standard deviation (σ), root-mean-square-difference (RMSD), unbiased root-mean-square-difference (uRMSD) and model efficiency (ME).

a Mean values and standard deviation are presented (N = 31).
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(SCM) was a common feature of the vertical chl a distribution in the
waters of trophic category I (Chl0 ranged from 0.1 to 0.5 mg m−3) (S5).
The presence of the SCM led to the divergence of the modelled and
observed vertical chl a profiles. Conversely, no pronounced SCM was
observed in the waters of categories II–IV (S6). A comparison of the
modelled and observed profiles suggests that the predicted vertical
distribution usually underestimated the in situ concentration in the top
of the euphotic zone and often overestimated chl a below this layer (S5
and S6).

Evaluating the contributions of the chl a concentration and phyto-
plankton assimilation activity within the water column in the overall
error of the IPP determination is important. Fig. 10a illustrates that the
modelled chl a within the photosynthetic layer, which was expressed as
the mean concentration ( Chlmod), relatively satisfactorily predicted the
observed values ( Chlmeas) (R

2 = 0.90; RMSD = 0.21). On the contrary,
weak correlation existed between the simulated following Eq. (5)–(8)
and measured water column daily assimilation activity (R2 = 0.42;

RMSD = 0.43) (Fig. 10b). These results indicate a significant role of the
accuracy in the determination of the chlorophyll-specific carbon
fixation rate (Pbz) for the depth-resolved IPP algorithms.

3.3. Skill assessment of region-specific algorithms with satellite data as input
variables

In this section, we compare the performance of region-specific
algorithms with satellite-derived (Ψ_MODsat and KSDRMsat) and in situ
data as input variables (Table 3). The satellite-derived chl a (Chlsat) is
the concentration within the penetration depth (1/Kd). Regression
analysis suggested that the average chl a in the Kara Sea average
within the penetration depth was strongly correlated with Chl0
(R2 = 0.99; slope = 0.98; N = 104) (Demidov et al., 2014).

The performance of Ψ_MODsat in terms of the RMSD did not vary
with the application of Chlsat from the region-specific algorithm and
MODIS-Aqua PAR as input variables. On the other hand, the R2 and ME
values decreased by a factor of 3.1 and 4.5, respectively (Tables 5 and 6
and Fig. 11). Ψ_MODsat, similar to Ψ_MOD, underestimated IPPmeas

(B= −0.08).
Interestingly, almost no differences were observed in the model

predictive capacity between the KSDRM and KSDRMsat in terms of the
RMSD (0.31 and 0.29, respectively) and B (0.14 and 0.17, respectively)
(Tables 4 and 5 and Fig. 11). On the other hand, the R2 of KSDRMsat

decreased by a factor of 2.7 compared to the KSDRM.
Comparing the predictive skill of the DIM (Ψ_MODsat) and DRM

(KSDRMsat) is interesting. The regression statistics and performance
indices, which are presented in Table 5, suggest that the differences in
the model predictive capacity between Ψ_MODsat and KSDRMsat are
negligible. Thus, KSDRMsat and Ψ_MODsat performed equally when
satellite data were used as input variables.

4. Discussion

In this study, we presented the development of a Kara Sea regional

Fig. 8. Root-mean-square difference (RMSD) (A) and model efficiency (ME) of different
Kara Sea models.

Fig. 9. Target diagram for the individual models. Bias* and uRMSD* are normalized B
and uRMSD by using standard deviation of log-transformed IPPmeas. The solid circle is the
normalized standard deviation of the log-transformed IPPmeas (σ = 0.477).
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models and a comparison of the predictive skills of different algorithms.
Below, we discuss the model skill of the depth-integrated, depth-
resolved, simple and more complex algorithms. Additionally, the RSM
and NRSM are compared.

4.1. Comparison of the DIM and DRM algorithms

A comparative analysis of the model skill in terms of the regression
statistics and performance indices implies that the differences in the
predictive capacity of the Kara Sea depth-resolved and depth-integrated
algorithms were insignificant (Table 4). The negligible differences in
the performance between the DIM (Ψ_MOD) and DRM (KSDRM) were
consistent with Behrenfeld and Falkowski (1997a, 1997b), who con-
cluded that the application of vertical chl a profiles did not significantly
improve IPP estimation. Following these authors, the DIM algorithms
explained ~85% of the IPP variability, while only ~15% of the
variance could be explained by the vertical distribution of chl a and
PAR. The results of the Kara Sea RSM development suggest that the
vertical resolution increased the model performance in terms of the
RMSD and ME by only ~7% (Table 4). Regarding the patterns of the
Kara Sea primary production characteristics, a minor difference be-
tween Ψ_MOD and KSDRM can be attributed to the strong contribution
of surface PP to the IPP, the small photosynthetic layer and weak SCM
development in most regions (Demidov and Mosharov, 2015). The
chlorophyll distribution pattern was characterized, on average, by a
maximum at the surface and linear or exponential decay with depth
(Fig. 5). The contribution of the SCM's development, presumably in the
category I waters, to the IPP was insignificant and ranged from 1 to
27% (Demidov et al., 2014). It is worth to note that vertical chl a
distribution pattern during autumn presented in this article is consistent
with the annual mean profile in the Kara Sea from the ARCSS-PP
database (Arrigo and van Dijken, 2011). On the other hand, we realise
that the Kara Sea vertical chlorophyll distribution dataset is restricted
by autumn and number of profiles (N = 107). Currently, we cannot go
to the final conclusion about role of the vertical chlorophyll distribution
in the Kara Sea primary production. Scarcity of the Kara Sea data is
especially evident in comparison with other datasets that were used to
describe the typical chlorophyll profiles in the different regions of the
World Ocean: 5206 profiles (Ardyna et al., 2013), 1199 profiles
(Cherkasheva et al., 2013), 4000 profiles (Morel and Berthon, 1989),
2419 profiles (Uitz et al., 2006).

The presented curves of the vertical chl a distribution in the Kara
Sea are distinguished from those in Arctic Ocean PP models. Typically,
the vertical chl a distribution is described as homogenous within the
UML and is assumed to exponentially decrease downward (Arrigo et al.,
2008; Pabi et al., 2008). A similar picture for post-bloom conditions was
considered by Hill and Zimmerman (2010) in the Chukchi Sea. The
homogenous chlorophyll distribution from the surface to the base of the
euphotic zone was considered by these authors during the pre-bloom
period. A constant chl a concentration throughout the depth of
integration was used later for in situ and remotely sensed IPP estima-
tions in the Arctic Ocean (Hill et al., 2013).

Unlike in the Kara Sea, the SCM is a common feature of the vertical
water column structure in the Arctic Ocean (Brown et al., 2015;

Fig. 10. (A) – comparison of measured ( Chlmeas) and modelled ( Chlmod ) chl a
concentration averaged within photosynthetic layer; (B) – comparison of measured
(Pbmeas) and modelled (Pbmod) daily chlorophyll specific carbon fixation rate within a water
column.

Table 5
Results of region-specific Kara Sea model validation with MODIS-Aqua data. Regression statistics and performance indices for the log-transformed IPPmeas and IPPmod are presented.

Model type Regression statistics Performance indices

Slope Intercept R2 N p value B σ RMSD uRMSD ME

Ψ_MODsat 0.42 1.02 0.22 26 0.02 −0.08 0.27 0.30 0.29 0.13
KSDRMsat 0.44 1.19 0.27 26 0.01 0.14 0.26 0.31 0.27 −0.06

Ψ_MODsat and KSDRMsat – depth-integrated and depth-resolved Kara Sea region-specific models with satellite data as input variables. Slope and intercept – parameters of linear
regression; R2 – coefficient of determination; p value indicates the significance level of each regression. Indices are mean model bias (B), standard deviation (σ), root-mean-square-
difference (RMSD), unbiased root-mean-square-difference (uRMSD) and model efficiency (ME).
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Cherkasheva et al., 2013; Martin et al., 2010, 2012). The SCM mainly
forms during the post-bloom period, occasionally promoting a deep
primary production maximum or smoothing PP profiles and essentially
determining the annual IPP (Hill et al., 2013; Zhai et al., 2012). On the
other hand, other authors noted that variations in the vertical chl a
distribution have limited effects on AO IPP (Ardyna et al., 2013; Arrigo
et al., 2011; Cherkasheva et al., 2013).

4.2. Maximal water column chlorophyll specific carbon fixation rate (Pbopt)
in the Kara Sea IPP models

The importance of accurate Pbopt estimates in IPP models is widely
known (Balch and Byrne, 1994; Behrenfeld and Falkowski, 1997a), but
difficulties exist in the determination of this parameter (Behrenfeld and

Falkowski, 1997b). Longhurst et al. (1995) proposed Pbopt as a mean
value for biogeochemical provinces to resolve this problem. Another
approach is to establish a relationship between Pbopt and an environ-
mental factor that limits phytoplankton assimilation activity, e.g., the
surface temperature (Megard, 1972; Behrenfeld and Falkowski, 1997a).

In a previous study (Demidov et al., 2014), we attempted to
determine the main abiotic factor that affects Pbopt in the Kara Sea. We
suggested that the incident PAR strongly influenced the chlorophyll-
specific carbon fixation rate during the autumn. Thus, we concluded
that I0 can be useful in the Pbopt algorithm at the end of the vegetation
season. Previously, Behrenfeld et al. (2002) revealed that the applica-
tion of growth radiation as an input variable significantly improved
photoacclimation models' predictive capacity compared to a tempera-
ture-dependent Pbopt model, which constituted approximately 9% of the
variance in the chlorophyll-specific carbon fixation rate. The irradi-
ance-dependent model that was applied in our study constituted 27% of
the variance in Pbopt. The lack of a correlation between the measured
and modelled values (Fig. 10b) provided additional evidence of the
importance of Pbopt algorithm enhancement.

Testing the influence of in situ Pbopt as an input variable on model
performance was also informative. Table 4 illustrates that the VGPM
had optimal regression statistics (slope = 1.02; R2 = 0.93), the lowest
regression error (RMSD = 0.27) and the highest model efficiency
(ME = 0.66) when the measured Pbopt was used as an input variable.
Additionally, previous studies have shown that using the in situ Pbopt in
the VGPM increased the model performance. Ishizaka et al. (2007)
verified the predictive capacity of the VGPM with the application of
field observations in Sagami Bay (Japan). The use of the in situ Pbopt in
the model formula increased R2 from 0.43 to 0.48 compared to the
original VGPM, where Pbopt was calculated from the temperature
dependence (Behrenfeld and Falkowski, 1997a). A better result was
achieved by Isada et al. (2010) in the Oyashio region. Their application
of the in situ Pbopt in the VGPM improved the model's performance in
terms of the coefficient of determination (an increase from 0.48 to
0.65). Additionally, using the in situ Pbopt in the VGPM increased the
model's predictive capacity in the Southern Ocean (Hirawake et al.,
2011).

4.3. Role of incident PAR as an input variable and photoadaptive
parameters as model coefficients in the improvement of region-specific
models

The chl a concentration is considered in the simplest models as the
index of water column productivity (Eppley et al., 1985; Smith and
Baker, 1978). In previous studies, chl a was used for IPP estimates in the
Arctic Ocean (Hill and Zimmerman, 2010; Hill et al., 2013; Matrai
et al., 2013), the Eurasian Arctic sector (Vetrov and Romankevich,
2011), the Southern Ocean (Puigcorbé et al., 2017) and the World
Ocean (Vinogradov et al., 1996).

The relationship between chl a and PP was found to be a simple
conversion factor without involving more complex parameterization
with chlorophyll specific assimilation activity and irradiance. Hill et al.
(2013) found a close relationship between the log-transformed chl a
concentration and daily PP for all depths (R2 = 0.66) based on the
ARCSS-PP dataset. These authors drew a conclusion regarding the
possibility of predicting IPP without PAR and photoadaptive para-
meters as input variables based on these results. This conclusion was
confirmed by the results of studies in the Beaufort Sea, where establish-
ing a reliable relationship between the primary production and
phytoplankton assimilation activity was not possible (Hill and Cota,
2005).

The results of our study demonstrate a minor correlation between
chl a and PP at all depths (R2 = 0.27) (Fig. 6a; Table 4). Additionally,
the regression analysis of Chl0 and IPPmeas revealed that only 12% of the
variability in the Kara Sea IPP depended on the surface chl a (Fig. 6b;
Table 4). Thus, the chl a concentration at the end of the vegetative

Fig. 11. Comparison of measured (IPPmeas) and modelled (IPPmod) depth-integrated values
of primary production that were calculated by using region-specific models with MODIS-
Aqua data (chl a, PAR and Kd) as input variables. A – depth-integrated Ψ_MOD; B – depth-
resolved KSDRM.
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season was not an index of phytoplankton productivity within the
photosynthetic layer. In the World Ocean, Chl0 defines< 50% of
integrated primary production (Banse and Yong, 1990; Balch et al.,
1992; Behrenfeld and Falkowski, 1997b). On the other hand, a strong
correlation between IPPmeas and Pbopt (R2 = 0.64) was established in the
Kara Sea. Furthermore, IPPmeas and Pbopt mainly depended on PAR
(Demidov et al., 2014). In the other Arctic Seas, the role of light in PP
also increases at the end of the growing season (Brugel et al., 2009;
Hegseth, 1997; Platt et al., 1987; Yun et al., 2012). Thus, we expected
that including Pbmeas, ψ and I0 in the IPP algorithms would improve the
model performance.

As seen in Table 4, Ψ_MOD and KSDRM, which used Pbmeas and ψ as
model coefficients and I0 as an input variable, predicted IPPmeas better
than models that were solely based on chlorophyll concentration. This
statement applies to both the regression statistics and performance
indices. Interestingly, SCHL_reg (a Chl0-based model) had better pre-
dictive skill than ZCHL_reg (a Chlz-based model). Generally, the region-
specific Ψ_MOD and KSDRM algorithms performed approximately 1.5-
fold better than ZCHL_reg (RMSD = 0.29, 0.31 and 0.42, respectively).

The mean model biases suggest that ZCHL_reg underestimated and
SCHL_reg overestimated the observed PP values (Table 4). Previously,
Hill and Zimmerman (2010) concluded that Chl-based calculations
underestimate depth-integrated PP in the Arctic Ocean. These authors
applied a relationship between the chl a concentration and PP at all
depths and in the ZCHL_reg model. Thus, we can conclude that our
results are consistent with those of Hill and Zimmerman. Additionally,
our results are consistent with those of Carr et al. (2006). These authors
noted that the simplest surface Chl-based model (Eppley et al., 1985)
overestimated PP at high latitudes (in conditions of low PAR and T0).

4.4. Advantages of the region-specific algorithms

Recent studies have reported the advantages of RSMs for AO IPP
estimations (IOCCG, 2015; Y. Lee et al., 2015). Models that are
developed with local databases operate with region-specific links
between production characteristics and environmental factors. Theore-
tically, such models will perform better at local sites than algorithms
that are created with datasets from other regions of the World Ocean.

We tested the predictive skill of some models that were developed
for other Arctic Ocean regions (ArcPP) and the modified VGPM by using
the Kara Sea dataset. The description of these models is given in the
Supplementary material (S7). The results of the regression analysis and
performance indices suggest that the VGPM with field Pbopt data as an
input variable demonstrated the best skill (Table 4; Fig. 7g) but
overestimated the in situ IPP (B = 0.24). Recently, the VGPM exhibited
the best results in the Arctic Ocean (Petrenko et al., 2013) and in the
Southern California Current System (Jacox et al., 2015; Kahru et al.,
2009).

The difficulties in Pbopt application are the inability to use this
parameter directly as the simplest input variable during both in situ and
remote observations. When the VGPM is used for IPP estimations, Pbopt
is calculated by using a polynomial equation that links Pbopt and T0
(Behrenfeld and Falkowski, 1997a). No correlation between Pbopt and T0
was observed during the autumn in the Kara Sea as shown in the
Supplementary material (S8). Following Hill and Zimmerman (2010),
we used the relationship between Pbopt and the incubation temperature
to calculate IPPmod (VGPM_Arc) (S7). These calculations demonstrated a
significant decrease in the model skill (R2 = 0.60; RMSD = 0.59;
ME =−0.60). Another approach is the application of the average
trophic level Pbopt (Table 4) as an input variable (VGPM_TR). This
method improved the model skill (R2 = 0.58; RMSD = 0.37;
ME = 0.37) compared to VGPM_Arc (Table 4). Finally, we verified
the Chl-based ArcPP model (Hill et al., 2013) by using the Kara Sea
dataset and vertical chl a distribution (Fig. 5). This algorithm was the
least applicable to the Kara Sea (R2 = 0.47; RMSD = 0.54;
ME =−0.34).

The average RMSD of the RSM and NRSM were equal to
0.34 ± 0.05 (N = 4) and 0.44 ± 0.13 (N = 4), respectively and their
average model biases (modulo values) were 0.13 ± 0.09 (N = 4) and
0.35 ± 0.12 (N = 4), respectively. The region-specific models (except
ZCHL_reg) underestimated or overestimated the in situ depth-integrated
PP by a factor of 2. The NRSM overestimated the observed water
column PP by a factor of 2.8. Thus, we can conclude that the region-
specific algorithms performed better than the other models on average.
However, we have to note that for all parameters the original VGPM
showed highest or very similar skills than KSDRM and Ψ_MOD which
were the best for the RSM and can get reasonable results in the Case II
water body of the Kara Sea but, as mentioned above, using of VGPM in
most cases is limited due to difficulties in determining of Pbopt. The other
NRSMs that were considered in the present article and that were
developed based on Case I waters datasets (Gordon and Morel, 1983;
Jerlov, 1968) are not appropriate to assess the Kara Sea's IPP.

Notably, the developed Kara Sea region-specific models that were
assessed by field experiments performed no better than algorithms that
were tested in previous works (Carr et al., 2006; Friedrichs et al., 2009;
Saba et al., 2010, 2011). These models were developed based on data
from different regions of the World Ocean, were validated at different
sites, and over- or underestimated the water column PP by a factor of 2.
Nevertheless, the developed RSM in the Kara Sea performed better than
the NRSM and demonstrated advantages during application.

4.5. Influence of satellite-derived data input on the performance of the
region-specific models

As mentioned above, the region-specific DIM (Ψ_MOD) and DRM
(KSDRM) models performed equally when in situ data were used as
input variables. Interestingly, the same conclusion could be reached
when satellite-derived chl a, PAR and Kd were used for model
validation (Table 5; Fig. 11). However, the application of satellite-
derived data decreased the efficiency of both Ψ_MODsat and KSDRMsat

in terms of the regression statistics, which is consistent with previous
studies (Balch et al., 1992; Y. Lee et al., 2015).

Accurately determining the surface chlorophyll by remote sensing is
critical to improve IPP estimation (e.g., Y. Lee et al., 2015). As seen in
Fig. 12a, the region-specific algorithm overestimated the in situ Chl0 at
values lower than 0.6 mg m−3. Nevertheless, this algorithm is currently
optimal because of the large errors of standard MODIS models in
optically complex waters (IOCCG, 2015). Our findings suggest that
MODIS OC3M overestimated Chlmeas by a factor of 3–5 in the Kara Sea,
which is dominated by CDOM absorption. However, a good correlation
was established between satellite-derived and measured PAR and Kd

(Fig. 12b, c).

5. Conclusions

In this study, we presented the results of the development and skill
assessment of region-specific Kara Sea depth-integrated and depth-
resolved IPP algorithms. The performance of the developed models was
compared to those of models that were used to evaluate Arctic Ocean
depth-integrated primary production. For the first time, IPP algorithms
were designed for Arctic Ocean Case II waters. We attempted to resolve
this problem because we believe that the IPP in Case I and Case II
waters must be assessed separately by using region-specific algorithms.
The results of comparison of RSM's and NRSM's predictive skills suggest
that the former are more effective in the Kara Sea than the latter.

The irradiance-dependent Pbopt model and vertical chl a profiles in
waters of variable productivity were applied for KSDRM parameteriza-
tion. Generally, the results of the comparison between the DIM and
DRM algorithms suggested that the depth resolution did not affect the
model's performance.

Thus, our results implied that the model skill was increased through
(1) a regional approach and (2) involving photophysiological phyto-
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plankton characteristics such as the water column daily assimilation
activity, efficiency of photosynthesis and incident solar radiation rather
than using the chl a concentration as a single input variable. Thus, we
consider the Ψ_MOD and KSDR algorithms to be the best for predicting
Kara Sea IPP.

Model validation with satellite-derived parameters showed that
region-specific DIM Ψ_MOD and DRM KSDRM performed equally.
Apparently, Ψ_MOD had advantages compared to the KSDRM because
of its simplicity. Therefore, we recommend using Ψ_MOD for Kara Sea
IPP estimation.

In conclusion, we should mention the limitations of using the
developed models. The examined algorithms were exclusively designed
based on an autumn dataset and should be applied to IPP calculations in
other seasons with some caution. Nevertheless, we consider that the
region-specific depth-integrated algorithm (Ψ_MOD) currently can be
implemented for IPP estimation in Arctic Ocean Case II waters by using
satellite-derived datasets. Finally, increasing the in situ PP sample size
and developing season-specific models is necessary to improve AO IPP
evaluation.
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